REMAP: recursive estimation and maximization of a posteriori probabilities in connectionist speech recognition

نویسندگان

  • Hervé Bourlard
  • Yochai Konig
  • Nelson Morgan
چکیده

In this paper, we brieey describe REMAP, an approach for the training and estimation of posterior probabilities, and report its application to speech recognition. REMAP is a recursive algorithm that is reminiscent of the Expectation Maximization (EM) 5] algorithm for the estimation of data likelihoods. Although very general, the method is developed in the context of a statistical model for transition-based speech recognition using Artificial Neural Networks (ANN) to generate probabilities for Hidden Markov Models (HMMs). In the new approach , we use local conditional posterior probabilities of transitions to estimate global posterior probabilities of word sequences. As with earlier hybrid HMM/ANN systems we have developed, ANNs are used to estimate posterior probabilities. In the new approach, however, the network is trained with targets that are themselves estimates of local posterior probabilities. Initial experimental results support the theory by showing an increase in the estimates of posterior probabilities of the correct sentences after REMAP iterations, and a decrease in error rate for an independent test set.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

REMAP: Recursive Estimation and Maximization of A Posteriori Probabilities - Application to Transition-Based Connectionist Speech Recognition

In this paper, we introduce REMAP, an approach for the training and estimation of posterior probabilities using a recursive algorithm that is reminiscent of the EM-based Forward-Backward (Liporace 1982) algorithm for the estimation of sequence likelihoods. Although very general, the method is developed in the context of a statistical model for transition-based speech recognition using Artificia...

متن کامل

Improved Bayesian Training for Context-Dependent Modeling in Continuous Persian Speech Recognition

Context-dependent modeling is a widely used technique for better phone modeling in continuous speech recognition. While different types of context-dependent models have been used, triphones have been known as the most effective ones. In this paper, a Maximum a Posteriori (MAP) estimation approach has been used to estimate the parameters of the untied triphone model set used in data-driven clust...

متن کامل

REMAP-experiments with speech recognition

In this report we present experimental and theoretical results using a framework for training and modeling continuous speech recognition systems based on the theoretically optimal Maximum a Posteriori (MAP) criterion. This is in constrast to most state-of-the-art systems which are trained according to a Maximum Likelihood (ML) criterion. Although the algorithm is quite general, we applied it to...

متن کامل

COMPARISON OF A NEW HYBRID CONNECTIONIST-SCHMM APPROACH WITH OTHER HYBRID APPROACHES FOR SPEECH RECO - Acoustics, Speech, and Signal Processing, 1995. ICASSP-95., 1995 International Conference on

This paper compares a newly proposed hybrid connectionist-SCHMM approach [5] with other hybrid a p proaches. In the new approach a multilayer perceptron (MLP) replaces the conventional codebooks of semicontinuous HMMs. The MLP is therefore trained on s w d k d basic elements (phones and phone parts) in such a way that the outputs of the network estimate the a posteriori probabilities of these e...

متن کامل

Unbiased SVM Density Estimation with Application to Graphical Pattern Recognition

Classification of structured data (i.e., data that are represented as graphs) is a topic of interest in the machine learning community. This paper presents a different, simple approach to the problem of structured pattern recognition, relying on the description of graphs in terms of algebraic binary relations. Maximum-a-posteriori decision rules over relations require the estimation of class-co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995